

Test Procedure for LC709209F Evaluation board

1 Evaluation Kit

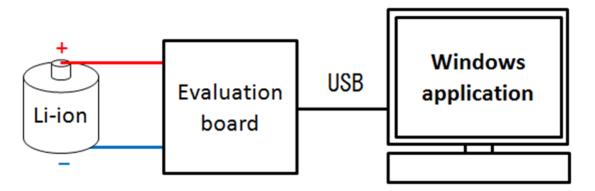
1.1 How to select Evaluation board

· Select a suitable Evaluation board according to target device and your battery.

Evaluation board	Target device	Battery	Related documents
		type	
LC709209FXE-	LC709209FXE-	01, 04,	LC709209FXE-01-GEVB_SCHEMATIC.pdf
01-GEVB	01TBG	05, 06,	LC709209FXE-01-GEVB_GERBER.zip
		07	LC709209FXE-01-GEVB_BOM.pdf

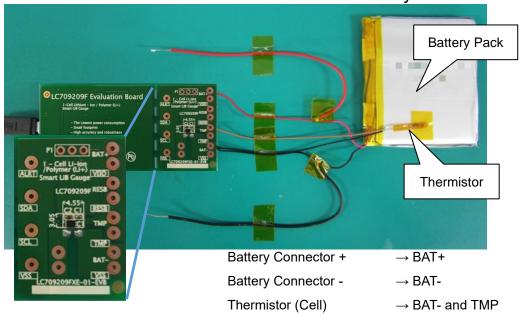
Battery profile vs registers

IC Type	Battery Type	Nominal / Rated Voltage	Charging Voltage	Number of The Parameter (0x1A)	Change of The Parameter (0x12)
LC709209FXE -01TBG	01	3.7 V	4.2 V		0x00
	04	UR18650ZY (Panasonic)		0x1001	0x01
	05	ICR18650-26H (SAMSUNG)			0x02
	06	3.8 V	4.35 V		0x03
	07	3.85V	4.4V		0x04

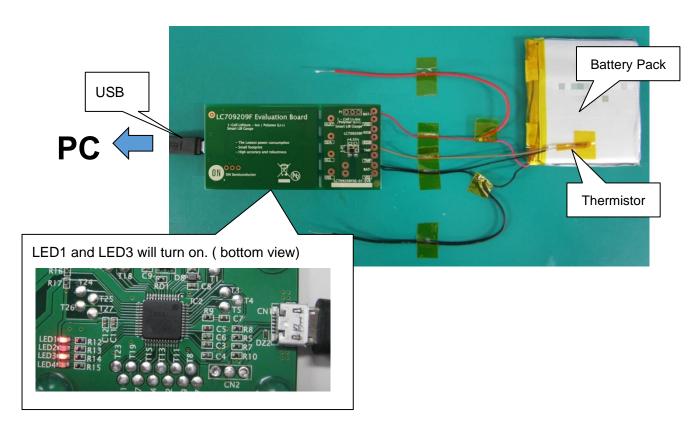

1.2 Evaluation board

1.3 Windows application

FGICTool_Verxxx.exe. The software can be downloaded at onsemi Web site.
 (Software)


1.4 Evaluation board Block diagram

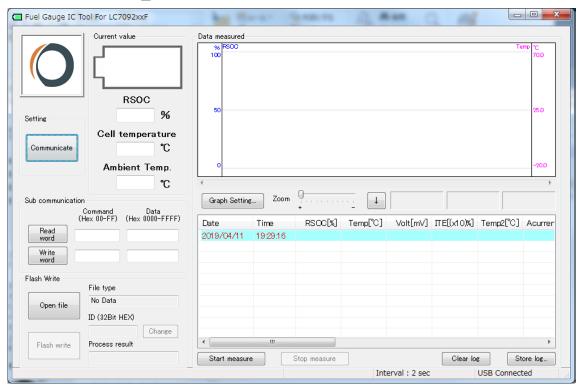
2 How to connect Evaluation board


2.1 Connection of Evaluation board and Battery

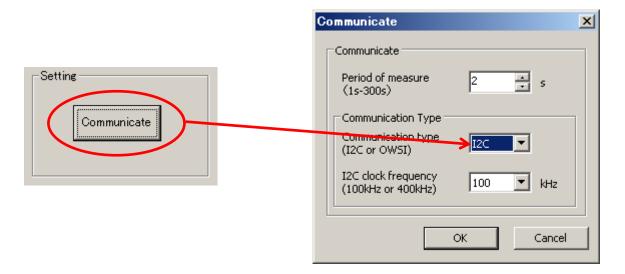
Note: $10 \text{ k}\Omega$ NTC thermistor is required.

Ex. SEMITEC 103JT-025

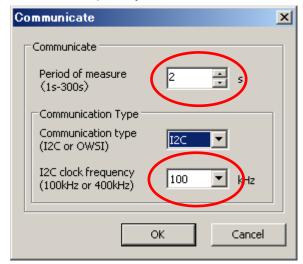
2.2 Connection of PC and EVA board



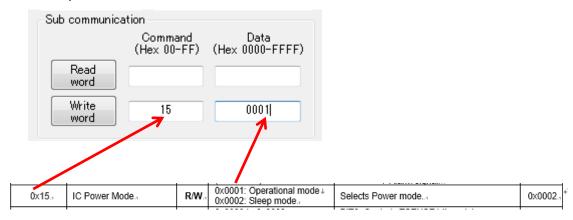
3 How to start application


3.1 Start application

Click "FGICTool_verxxx.exe"


3.2 Select communication type

· Click "Communicate" and select I2C.

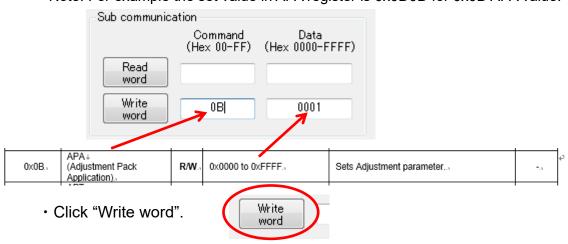


Select time interval of log and I2C clock frequency.

4 Register setting

- 4.1 Set Operational mode
 - Setting registers
 - -Input [15] in the Command field.
 - -Input 「0001」 in the Data field.

· Click "Write word".



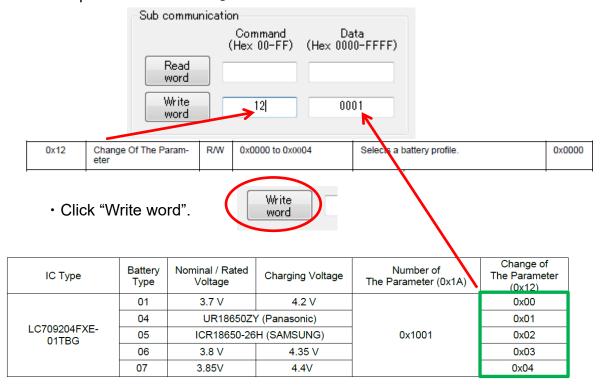
4.2 Set APA

Set APA parameter that is suitable for your battery. Refer datasheet about typical APA. The applied APA value is selected by the design capacity of your battery and Battery type. Select Maximum APA when your design capacity exceeds the listed capacity.

- Setting registers
 - -Input 「0B」 in the Command field.
- -Input 「0000 to FFFF (a value suitable for your battery)」 in the Data field. Note: For example the set value in APA register is 0x0D0D for 0x0D APA value.

Typical APA

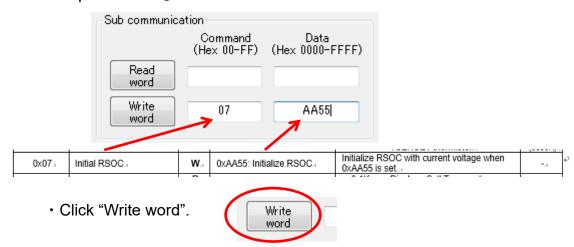
	APA[15:8],APA[7:0]		
Design Capacity	Type-01	Type-06	Type-07
50 mAh	0x13, 0x13	0x0C, 0x0C	0x03, 0x03
100 mAh	0x15, 0x15	0x0E, 0x0E	0x05, 0x05
200 mAh	0x18, 0x18	0x11, 0x11	0x07, 0x07
500 mAh	0x21, 0x21	0x17, 0x17	0x0D, 0x0D
1000 mAh	0x2D, 0x2D	0x1E, 0x1E	0x13, 0x13
2000 mAh	0x3A, 0x3A	0x28, 0x28	0x19, 0x19
3000 mAh	0x3F, 0x3F	0x30, 0x30	0x1C, 0x1C
4000 mAh	0x42, 0x42	0x34, 0x34	-
5000 mAh	0x44, 0x44	0x36, 0x36	-
6000 mAh	0x45, 0x45	0x37, 0x37	-


	APA[15:8],APA[7:0]		
Design Capacity	Type-04	Type−05	
2600 mAh	0x10, 0x10	0x06, 0x06	

4.3 Select battery profile

Select and set a profile that is suitable for your battery from the datasheet.

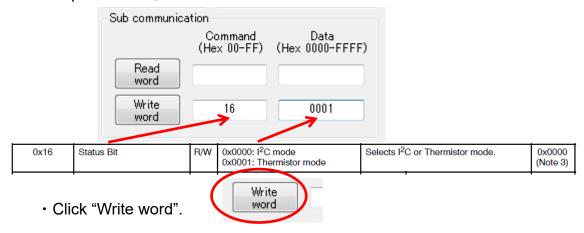
- · Setting registers
 - -Input 「12」 in the Command field.
 - -Input 「0000 or 0001」 in the Data field.



4.4 Initialize RSOC

Execute RSOC initialization.

- Setting registers
 - -Input [07] in the Command field.
 - -Input 「AA55」 in the Data field.

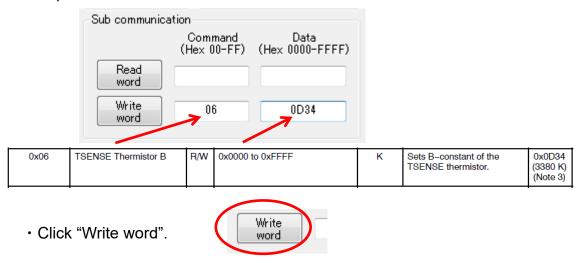


Note: The accuracy of the Initialization requires the OCV reading to be taken with minimal load or charge, under 0.025C, on the battery. (i.e. less than 75mA for 3000mAh design capacity battery.)

4.5 Set Thermistor mode

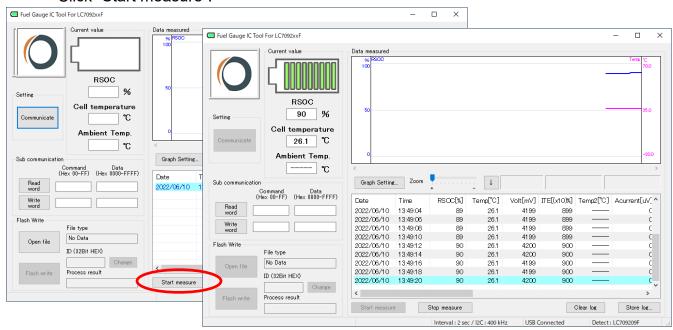
Select Thermistor mode.

- Setting registers
 - -Input [16] in the Command field.
- -Input \[\left[0001 \right] \] in the Data field.


Note: This setting is not required if this LSI receives Cell temperature from Master device via I2C.

4.6 Set Thermistor B

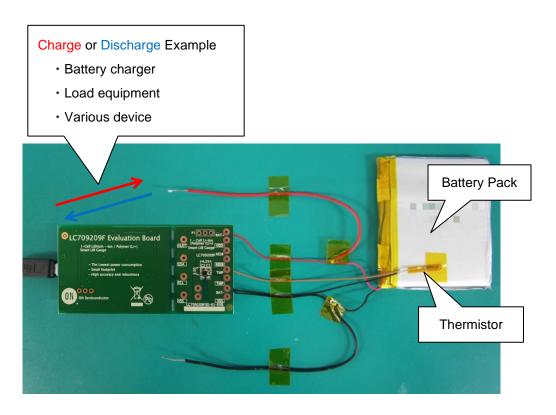
Set a value that is suitable for your thermistor for TSENSE. Refer to the datasheet of the thermistor for the B constant.


- · Setting registers
 - -Input [06] in the Command field.
 - -Input 「B constant」 in the Data field.

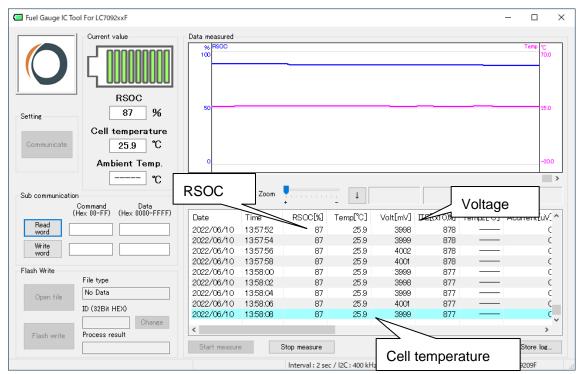
5 Starting evaluation

5.1 Measurements and Logging

· Click "Start measure".



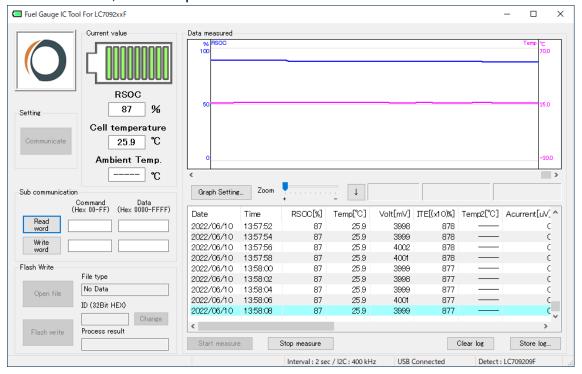
Application starts measurements and logging.



5.2 Start charging/discharging

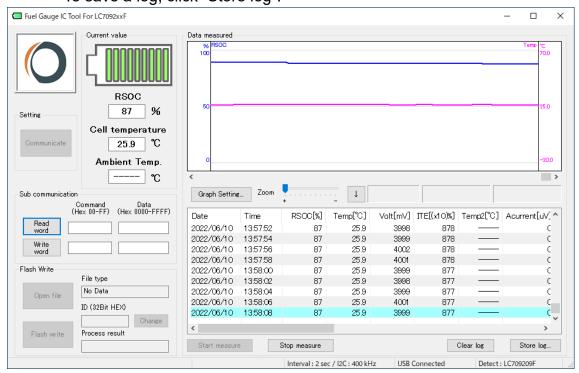
· Connect charger/load to your battery.

5.3 Logging while Charging/Discharging



Display in	Command	Register Name	Comment
GUI	Code		
RSOC	0x0D	RSOC	
Temp	0x08	Cell	
		Temperature	
Volt	0x09	Cell Voltage	
ITE	0x0F	ITE	
Acurrent	0x34	Average Cell	Cell Current
		Current	= Acurrent * Sense resistance
MaxCellVolt	0x2A	Maximum Cell	
		Voltage	
MinCellVolt	0x2B	Minimum Cell	
		Voltage	
MinDcurrent	0x2F	Minimum Cell	Cell Current
		Current	= MinDcurrent * Sense resistance

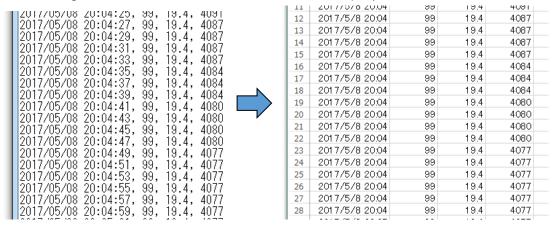
5.4 End the measurements


· To end, click "Stop measure".

5.5 Store log

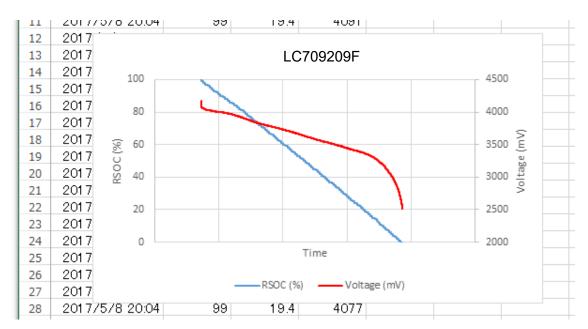
This application can save all measurement log as a text file.

· To save a log, click "Store log".



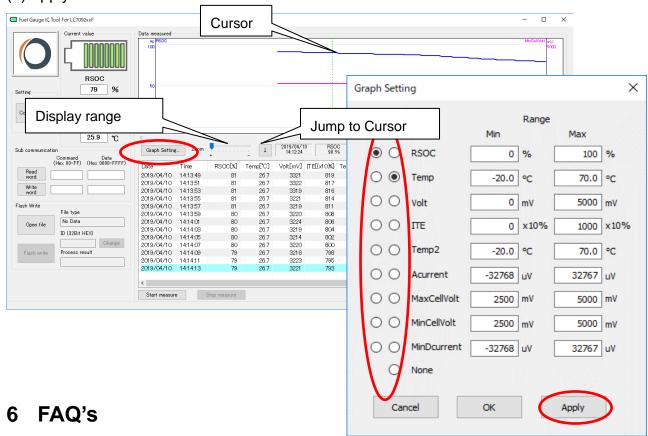
5.6 Convert log file format

The output text file can be converted to Excel format csv. The conversion to csv facilitates the analysis of data.


• Change the file format from .txt to .csv. Example) test.txt \rightarrow test.csv.

5.7 Graph

5.7.1 .csv file


· Graph the .csv file.

This graph shows association between time and cell voltage and RSOC in constant current discharging.

- 5.7.2 FGI Graph
- (1) Click "Graph Setting"
- (2) Select "Graph 1 and 2"
- (3) Change the value of range for each graph
- (4) Apply

- **Q.** How do I know what battery profile to use?
- **A.** Battery characteristics are listed on Table 8 of datasheet. If your battery is not listed on the table, please contact onsemi.
- **Q.** Why does the Fuel Gauge continue to display the same voltage or temperature or RSOC?
- **A.** Please ensure that Fuel gauge is not in Sleep mode. Please set Operational mode if so.
- Q. Can I load the other battery profile to the Fuel Gauge?
- **A.** Yes. You can load a new battery profile to the Fuel Gauge using Evaluation board or Master device via I2C. Please contact onsemi for details.

7 Related Documents

Please obtain the latest documents about LC709209F at onsemi Web site (www.onsemi.com). Search part number: LC709209F.

- 1) LC709209F, Smart LiB Gauge Battery Fuel Gauge LSI for 1-Cell Lithium-ion/Polymer (Li+) Data Sheet
- 2) LC709209F, Application Note
- 3) LC709209F, Evaluation Board Documents
- 4) LC709209F, Software FGICTool

8 Revision history

Version	Date	Details
1.0	07/01/2022	Initial release